Objectives

• Define access control and list the four access control models
• Describe logical access control methods
• Explain the different types of physical access control
What Is Access Control?

• **Access control**
 – The process by which resources or services are granted or denied on a computer system or network
• There are four standard access control models as well as specific practices used to enforce access control
Access Control Terminology

• **Identification**
 – A user accessing a computer system would present credentials or identification, such as a username

• **Authentication**
 – Checking the user’s credentials to be sure that they are authentic and not fabricated

• **Authorization**
 – Granting permission to take the action

• A computer user is granted **access**
 – To only certain services or applications in order to perform their duties
Access Control Terminology (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Scenario Example</th>
<th>Computer Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Review of credentials</td>
<td>Delivery person shows employee badge</td>
<td>User enters username</td>
</tr>
<tr>
<td>Authentication</td>
<td>Validate credentials as genuine</td>
<td>Megan reads badge to determine it is real</td>
<td>User provides password</td>
</tr>
<tr>
<td>Authorization</td>
<td>Permission granted for admittance</td>
<td>Megan opens door to allow delivery person in</td>
<td>User authorized to log in</td>
</tr>
<tr>
<td>Access</td>
<td>Right given to access specific resources</td>
<td>Delivery person can only retrieve box by door</td>
<td>User allowed to access only specific data</td>
</tr>
</tbody>
</table>

Table 7-1 Basic steps in access control
Access Control Terminology (continued)

• Computer access control can be accomplished by one of three entities: hardware, software, or a policy
• Access control can take different forms depending on the resources that are being protected
• Other terminology is used to describe how computer systems impose access control:
 – Object
 – Subject
 – Operation
Access Control Terminology (continued)

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
<th>Duties</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Person responsible for the information</td>
<td>Determines the level of security needed for the data and delegates security duties as required</td>
<td>Determines that file SALARY.XLSX can be read only by department managers</td>
</tr>
<tr>
<td>Custodian</td>
<td>Individual to whom day-to-day actions have been assigned by the owner</td>
<td>Periodically reviews security settings and maintains records of access by end users</td>
<td>Sets and reviews security settings on SALARY.XLSX</td>
</tr>
<tr>
<td>End User</td>
<td>User who accesses information in the course of routine job responsibilities</td>
<td>Follows organization’s security guidelines and does not attempt to circumvent security</td>
<td>Opens SALARY.XLSX</td>
</tr>
</tbody>
</table>

Table 7-2 Roles in access control
Figure 7-1 Access control process and terminology
Access Control Models

• **Access control model**
 – Provides a predefined framework for hardware and software developers who need to implement access control in their devices or applications

• Once an access control model is applied
 – Custodians can configure security based on the requirements set by the owner
 • So that end users can perform their job functions
Access Control Models (continued)

There are four AC models:
– Mandatory Access Control (MAC) model
– Discretionary Access Control (DAC) model
– Role Based Access Control (RBAC) model
– Rule Based Access Control (RBAC) model
Access Control Models (continued)

- **Mandatory Access Control (MAC) model**
 - The end user cannot implement, modify, or transfer any controls
 - The owner and custodian are responsible for managing access controls

- This is the most restrictive model because all controls are fixed

- In the original MAC model, all objects and subjects were assigned a numeric access level
 - The access level of the subject had to be higher than that of the object in order for access to be granted
Access Control Models (continued)

• **Discretionary Access Control (DAC) model**
 – The least restrictive
 – A subject has total control over any objects that he or she owns
 • Along with the programs that are associated with those objects
 • In the DAC model, a subject can also change the permissions for other subjects over objects
Access Control Models (continued)

• **Role Based Access Control (RBAC) model**
 – Sometimes called **Non-Discretionary Access Control**
 – Considered a more “real world” approach than the other models
 – Assigns permissions to particular roles in the organization, and then assigns users to that role
 – Objects are set to be a certain type, to which subjects with that particular role have access
Access Control Models (continued)

• **Rule Based Access Control (RBAC) model**
 – Also called the Rule-Based Role-Based Access Control (RB-RBAC) model or **automated provisioning**
 – Can dynamically assign roles to subjects based on a set of rules defined by a custodian
 – Each resource object contains a set of access properties based on the rules

• Rule Based Access Control is often used for managing user access to one or more systems
Access Control Models (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Restrictions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Access Control (MAC)</td>
<td>End user cannot set controls</td>
<td>Most restrictive model</td>
</tr>
<tr>
<td>Discretionary Access Control (DAC)</td>
<td>Subject has total control over objects</td>
<td>Least restrictive model</td>
</tr>
<tr>
<td>Role Based Access Control (RBAC)</td>
<td>Assigns permissions to particular roles in the organization and then users are assigned to roles</td>
<td>Considered a more “real world” approach</td>
</tr>
<tr>
<td>Rule Based Access Control (RBAC)</td>
<td>Dynamically assigns roles to subjects based on a set of rules defined by a custodian</td>
<td>Used for managing user access to one or more systems</td>
</tr>
</tbody>
</table>

Table 7-3 Access control models
Practices for Access Control

• **Separation of duties**
 – Requires that if the fraudulent application of a process could potentially result in a breach of security
 • Then the process should be divided between two or more individuals

• **Job rotation**
 – Instead of one person having only responsibility for a function, individuals are periodically moved from one job responsibility to another
Practices for Access Control (continued)

- **Least privilege**
 - Each user should be given only the minimal amount of privileges necessary to perform his or her job function

- **Implicit deny**
 - If a condition is not explicitly met, then it is to be rejected
Logical Access Control Methods

- The methods to implement access control are divided into two broad categories
 - Physical access control and logical access control
- Logical access control includes access control lists (ACLs), group policies, account restrictions, and passwords
Access Control Lists (ACLs)

• **Access control list (ACL)**
 – A set of permissions that is attached to an object
 – Specifies which subjects are allowed to access the object
 • And what operations they can perform on it

• These lists are most often viewed in relation to files maintained by the operating system

• The structure behind ACL tables is a bit complex

• **Access control entry (ACE)**
 – Each entry in the ACL table in the Microsoft Windows, Linux, and Mac OS X operating systems
Access Control Lists (ACLs) (continued)

<table>
<thead>
<tr>
<th></th>
<th>File-A</th>
<th>File-B</th>
<th>File-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>Read, write</td>
<td>Read, write</td>
<td>Read</td>
</tr>
<tr>
<td>User2</td>
<td>Read</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Read, write, execute</td>
<td>Read, write, execute</td>
<td>Read, write, execute</td>
</tr>
</tbody>
</table>
Account Restrictions

• **Time of day restrictions**
 – Limit when a user can log on to a system
 – These restrictions can be set through a Group Policy
 – Can also be set on individual systems

• **Account expiration**
 – The process of setting a user’s account to expire
 – Orphaned accounts are user accounts that remain active after an employee has left an organization
 • Can be controlled using account expiration
Control when Mark will use the computer
Click and drag the hours you want to block or allow.

<table>
<thead>
<tr>
<th></th>
<th>Midnight (AM)</th>
<th>Noon (PM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Allowed**
- **Blocked**

Figure 7-5 Windows Vista Parental Controls
Figure 7-6 Wireless access point restrictions
Passwords

• **Password**
 – The most common logical access control
 – Sometimes referred to as a logical token
 – A secret combination of letters and numbers that only the user knows
Passwords (continued)

- Passwords are considered weak because:
 - A password should never be written down. Must also be of a sufficient length and complexity so that an attacker cannot easily guess it (password paradox)
 - Users have 20 or more accounts that needs passwords. Because of humans limited memorizing force users to use weak passwords.
 - There are several password myths.
Passwords (continued)

<table>
<thead>
<tr>
<th>Myth</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4T9#6@ is better than <code>this_is_a_very_long_password</code>.</td>
<td>Even though the first password is a combination of letters, numbers, and symbols, it is too short and can easily be broken.</td>
</tr>
<tr>
<td>The best length for a password is 8 characters.</td>
<td>Because of how systems store passwords, the minimum recommended length is 15 characters.</td>
</tr>
<tr>
<td>Replacing letters with numbers, such as <code>J0hn_Sm1th</code>, is good.</td>
<td>Password-cracking programs can look for common words (John) as well as variations using numbers (J0hn).</td>
</tr>
<tr>
<td>Passwords cannot include spaces.</td>
<td>Many password programs can accept spaces as well as special characters.</td>
</tr>
</tbody>
</table>

Table 7-4 Common password myths
Passwords (continued)

• **Attacks on passwords:**
 – Brute force attack
 – Dictionary attack
 – Rainbow tables
Passwords (continued)

• Attacks on passwords
 – **Brute force attack**
 • Simply trying to guess a password through combining a random combination of characters.
 • By changing one character at a time, using each newly generated password to access the system
 – Passwords typically are stored in an encrypted form called a “hash”
 • Attackers try to steal the file of hashed passwords and then break the hashed passwords offline
Passwords (continued)

- **Time calculations:**
 - Four digit = $10 \times 10 \times 10 \times 10 = 10,000$ (0.01 Second)
 - Four capital letters = $26 \times 26 \times 26 \times 26 = 456,976$ (.45 Second)
 - Four capital and small letters = $52 \times 52 \times 52 \times 52 = 7,311,616$ (7.3 Seconds)
 - Four digit, capital and small letters = $62 \times 62 \times 62 \times 62 = 14,776,336$ (14.7 Seconds)
 - Four digit, special character (10), capital and small letters = $72 \times 72 \times 72 \times 72 = 1,934,917,632$ (32 Minutes)
 - Eight digit, special character (10), capital and small letters = $72 \times 72 = 722,204,136,308,736$ (23 Years)
Passwords (continued)

• Attacks on passwords (continued)
 – Dictionary attack
 • Begins with the attacker creating hashes of common dictionary words
 – And compares those hashed dictionary words against those in a stolen password file
Figure 7-7 Dictionary attack
Passwords (continued)

• Attacks on passwords (continued)
 – Rainbow tables
 • Make password attacks easier by creating a large pregenerated data set of hashes from nearly every possible password combination

• Steps for using Rainbow tables:
 – Creating tables.
 – Use the table to crack the password.
Passwords (continued)

• Generating a rainbow table requires a significant amount of time

• Rainbow table advantages
 – Can be used repeatedly for attacks on other passwords
 – Rainbow tables are much faster than dictionary attacks
 – The amount of memory needed on the attacking machine is greatly reduced
Passwords (continued)

• **Password policy**
 – A strong password policy can provide several defenses against password attacks
 – The first password policy is to create and use strong passwords
• One of the best defenses against rainbow tables is to prevent the attacker from capturing the password hashes
• A final defense is to use another program to help keep track of passwords
Physical Access Control

• Physical access control primarily protects computer equipment
 – Designed to prevent unauthorized users from gaining physical access to equipment in order to use, steal, or vandalize it
• Physical access control includes computer security, door security, mantraps, video surveillance, and physical access logs
• We will only cover door security,
Door Security

• Hardware locks
 – Preset lock
 • Also known as the **key-in-knob lock**
 • The easiest to use because it requires only a key for unlocking the door from the outside
 • Automatically locks behind the person, unless it has been set to remain unlocked
 • Security provided by a preset lock is minimal
Door Security (continued)

![Preset lock diagram](image)

Figure 7-10 Preset lock
Door Security (continued)

• Hardware locks (continued)

 – **Deadbolt lock**

 • Extends a solid metal bar into the door frame for extra security

 • Is much more difficult to defeat than preset locks

 • Requires that the key be used to both open and lock the door
Door Security (continued)

Figure 7-11 Deadbolt lock
Door Security (continued)

• Most organizations observe the following practices:
 – Change locks immediately upon loss or theft of keys
 – Inspect all locks on a regular basis
 – Issue keys only to authorized persons
 – Keep records of who uses and turns in keys
 – Keep track of keys issued, with their number and identification
 – Master keys should not have any marks identifying them as masters
Door Security (continued)

- Most organizations observe the following practices: (continued)
 - Secure unused keys in a locked safe
 - Set up a procedure to monitor the use of all locks and keys and update the procedure as necessary
 - When making duplicates of master keys, mark them “Do Not Duplicate,” and wipe out the manufacturer’s serial numbers to keep duplicates from being ordered
Door Security (continued)

- **Door access systems**
 - **Cipher lock**
 - Combination locks that use buttons that must be pushed in the proper sequence to open the door
 - Can be programmed to allow only the code of certain individuals to be valid on specific dates and times
 - Cipher locks also keep a record of when the door was opened and by which code
 - Cipher locks are typically connected to a networked computer system
 - Can be monitored and controlled from one central location
Figure 7-12 Cipher lock
Door Security (continued)

• Door access systems (continued)
 – Cipher lock disadvantages
 • Basic models can cost several hundred dollars while advanced models can be even more expensive
 • Users must be careful to conceal which buttons they push to avoid someone seeing or photographing the combination (shoulder surfing)
Door Security (continued)

• Door access systems (continued)
 – Tailgate sensor
 • Use multiple infrared beams that are aimed across a doorway and positioned so that as a person walks through the doorway
 – Some beams are activated and then other beams are activated a short time later
 • Can detect if a second person walks through the beam array immediately behind (“tailgates”) the first person
 – Without presenting credentials
Door Security (continued)
Door Security (continued)

- Physical tokens
 - Objects to identify users

- **ID badge**
 - The most common types of physical tokens
 - ID badges originally contain a magnetic strip that is swiped or scanned to identify users
 - Today, ID badges can be fitted with tiny radio frequency identification (RFID) tags
 - Can be read by an RFID transceiver as the user walks through the door with the badge in her pocket
Door Security (continued)

Figure 7-13 RFID tag
Door Security (continued)

• RFID can be:
 – Passive RFID:
 • No power supply.
 • Small in size and send very small data.
 • Small range (19 ft)
 – Active RFID:
 • Has power supply.
 • Larger in size and can store additional data.
 • Larger range (98 ft)
Summary

• Access control is the process by which resources or services are denied or granted
• Best practices for implementing access control include separation of duties, job rotation, using the principle of least privilege, and using implicit deny
• Logical access control methods include using access control lists (ACLs), which are provisions attached to an object
• Passwords, sometimes known as logical tokens, are a secret combination of letters and numbers that only the user should know
Summary (continued)

• Physical access control attempts to limit access to computer equipment by unauthorized users